0

Automatic Detection Of Human Face Under Different Imaging Conditions

Erschienen am 25.04.2015, 1. Auflage 2015
54,90 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783659690709
Sprache: Englisch
Umfang: 128 S.
Format (T/L/B): 0.8 x 22 x 15 cm
Einband: kartoniertes Buch

Beschreibung

Due to its wide range of use in human face-related applications, face detection has been considered one of the most important areas of research in computer vision and visual pattern recognition communities. Though current methods perform well on controlled face images, their performance degrades considerably under realistic scenarios that include pose, illumination and blur challenges as well as low-resolution images. This book proposes an efficient approach for detecting faces in uncontrolled imaging conditions using a probabilistic framework based on Hough forests. Hough forests can be regarded as task-adapted codebooks of local appearance that allow fast supervised training and fast matching at test time, codebooks are built upon a pool of heterogeneous local appearance features, a codebook is learned for the face appearance features that models the spatial distribution and appearance of facial parts of the human face. Extensive evaluation of the proposed method on various databases shows the usefulness of the method. We show that the suggested method improves the detection rate and accuracy outperforming the state-of-the-art methods.

Autorenportrait

Mourad Ahmed received his M.Sc. degree in Computer Science in 2015 from Faculty of Science, South Valley University. He is an assistance lecturer at the Department of Mathematics, SVU, Egypt. His research interests include Machine Learning, Computer Vision, Evolutionary Computing, Pattern Recognition. Specially: Face Detection and Object Tracking.