0

Numerical Methods in Finance

Bordeaux, June 2010, Springer Proceedings in Mathematics 12

Erschienen am 13.04.2014, 1. Auflage 2014
149,79 €
(inkl. MwSt.)

Lieferbar innerhalb 1 - 2 Wochen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9783642444074
Sprache: Englisch
Umfang: xviii, 474 S.
Einband: kartoniertes Buch

Beschreibung

InhaltsangabePart I: Particle Methods in Finance.- 1 R. Carmona, P. Del Moral, P. Hu, N, Oudjane: An Introduction to Particle Methods with Financial Applications.- 2.Bhojnarine R. Rambharat: American option valuation with particle filters.- 3.Michael Ludkovski: Monte Carlo Methods for Adaptive Disorder Problems.- Part II: Numerical methods for backward conditional expectations.- 4.Pierre Del Moral, Bruno Rémillard, Sylvain Rubenthale: Monte Carlo approximations of American options that preserve monotonicity and convexity.- 5.Bruno Rémillard, Alexandre Hocquard, Hugues Langlois, and Nicolas Papageorgiou: Optimal Hedging of American Options in Discrete Time.- 6.Gilles Pagès and Benedikt Wilbertz: Optimal Delaunay and Voronoi quantization schemes for pricing American style options.- 7.Bruno Bouchard, Xavier Warin: Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods.- 8.Christian Bender  and Jessica Steiner: Least-squares Monte Carlo for backward SDEs.- 9.Lisa J. Powers, Johanna Neslehová, and David A. Stephens: Pricing American Options in an infinite activity Lévy market: Monte Carlo and deterministic approaches using a diffusion approximation.- 10.Bowen Zhang and Cornelis W. Oosterlee: Fourier Cosine Expansions and Put-Call Relations for Bermudan Options.- Part III: Numerical methods for energy derivatives.- 11.Klaus Wiebauer: A practical view on valuation of multi-exercise American style options in gas and electricity markets.- 12. Marie Bernhart, Huyen Pham, Peter Tankov and Xavier Warin: Swing Options Valuation: a BSDE with Constrained Jumps Approach.- 13.François Turboult  and Yassine Youlal: Swing option pricing by optimal exercise boundary estimation.- 14.Xavier Warin: Gas Storage Hedging.- 15.J.Frédéric Bonnans, Zhihao Cen, Thibault Christel: Sensitivity analysis of energy contracts by stochastic programming techniques. 

Autorenportrait

InhaltsangabePart I: Particle Methods in Finance.- 1 R. Carmona, P. Del Moral, P. Hu, N, Oudjane: An Introduction to Particle Methods with Financial Applications.- 2.Bhojnarine R. Rambharat: American option valuation with particle filters.- 3.Michael Ludkovski: Monte Carlo Methods for Adaptive Disorder Problems.- Part II: Numerical methods for backward conditional expectations.- 4.Pierre Del Moral, Bruno Rémillard, Sylvain Rubenthale: Monte Carlo approximations of American options that preserve monotonicity and convexity.- 5.Bruno Rémillard, Alexandre Hocquard, Hugues Langlois, and Nicolas Papageorgiou: Optimal Hedging of American Options in Discrete Time.- 6.Gilles Pagès and Benedikt Wilbertz: Optimal Delaunay and Voronoi quantization schemes for pricing American style options.- 7.Bruno Bouchard, Xavier Warin: Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods.- 8.Christian Bender  and Jessica Steiner: Least-squares Monte Carlo for backward SDEs.- 9.Lisa J. Powers, Johanna Neslehová, and David A. Stephens: Pricing American Options in an infinite activity Lévy market: Monte Carlo and deterministic approaches using a diffusion approximation.- 10.Bowen Zhang and Cornelis W. Oosterlee: Fourier Cosine Expansions and Put-Call Relations for Bermudan Options.- Part III: Numerical methods for energy derivatives.- 11.Klaus Wiebauer: A practical view on valuation of multi-exercise American style options in gas and electricity markets.- 12. Marie Bernhart, Huyen Pham, Peter Tankov and Xavier Warin: Swing Options Valuation: a BSDE with Constrained Jumps Approach.- 13.François Turboult  and Yassine Youlal: Swing option pricing by optimal exercise boundary estimation.- 14.Xavier Warin: Gas Storage Hedging.- 15.J.Frédéric Bonnans, Zhihao Cen, Thibault Christel: Sensitivity analysis of energy contracts by stochastic programming techniques.