0

Soft Methods for Integrated Uncertainty Modelling

eBook - Advances in Intelligent and Soft Computing

Erschienen am 08.10.2007, 1. Auflage 2007
173,95 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9783540347774
Sprache: Englisch
Umfang: 413 S., 4.20 MB
E-Book
Format: PDF
DRM: Digitales Wasserzeichen

Beschreibung

The idea of soft computing emerged in the early 1990s from the fuzzy systems c- munity, and refers to an understanding that the uncertainty, imprecision and ig- rance present in a problem should be explicitly represented and possibly even - ploited rather than either eliminated or ignored in computations. For instance, Zadeh de?ned Soft Computing as follows: Soft computing differs from conventional (hard) computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty and partial truth. In effect, the role model for soft computing is the human mind. Recently soft computing has, to some extent, become synonymous with a hybrid approach combining AI techniques including fuzzy systems, neural networks, and biologically inspired methods such as genetic algorithms. Here, however, we adopt a more straightforward de?nition consistent with the original concept. Hence, soft methods are understood as those uncertainty formalisms not part of mainstream s- tistics and probability theory which have typically been developed within the AI and decisionanalysiscommunity.Thesearemathematicallysounduncertaintymodelling methodologies which are complementary to conventional statistics and probability theory.

Inhalt

Keynote Papers.- Generalized Theory of Uncertainty (GTU) Principal Concepts and Ideas.- Reasoning with Vague Probability Assessments.- Soft Methods in Earth Systems Engineering.- Statistical Data Processing under Interval Uncertainty: Algorithms and Computational Complexity.- Soft Methods in Statistics and Random Information Systems.- On Testing Fuzzy Independence.- Variance Decomposition of Fuzzy Random Variables.- Fuzzy Histograms and Density Estimation.- Graded Stochastic Dominance as a Tool for Ranking the Elements of a Poset.- On Neyman-Pearson Lemma for Crisp, Random and Fuzzy Hypotheses.- Fuzzy Probability Distributions Induced by Fuzzy Random Vectors.- On the Identifiability of TSK Additive Fuzzy Rule-Based Models.- An Asymptotic Test for Symmetry of Random Variables Based on Fuzzy Tools.- Exploratory Analysis of Random Variables Based on Fuzzifications.- A Method to Simulate Fuzzy Random Variables.- Friedmans Test for Ambiguous and Missing Data.- Probability of Imprecisely-Valued Random Elements with Applications.- Measure-Free Martingales with Application to Classical Martingales.- A Note on Random Upper Semicontinuous Functions.- Optional Sampling Theorem and Representation of Set-Valued Amart.- On a Choquet Theorem for Random Upper Semicontinuous Functions.- A General Law of Large Numbers, with Applications.- Applications and Modelling of Imprecise Operators.- Fuzzy Production Planning Model for Automobile Seat Assembling.- Optimal Selection of Proportional Bounding Quantifiers in Linguistic Data Summarization.- A Linguistic Quantifier Based Aggregation for a Human Consistent Summarization of Time Series.- Efficient Evaluation of Similarity Quantified Expressions in the Temporal Domain.- Imprecise Probability Theory.- Conditional Lower Previsions forUnbounded Random Quantities.- Extreme Lower Probabilities.- Equivalence Between Bayesian and Credal Nets on an Updating Problem.- Varying Parameter in Classification Based on Imprecise Probabilities.- Comparing Proportions Data with Few Successes.- A Unified View of Some Representations of Imprecise Probabilities.- Possibility, Evidence and Interval Methods.- Estimating an Uncertain Probability Density.- Theory of Evidence with Imperfect Information.- Conditional IF-probability.- On Two Ways for the Probability Theory on IF-sets.- A Stratification of Possibilistic Partial Explanations.- Finite Discrete Time Markov Chains with Interval Probabilities.- Evidence and Compositionality.- High Level Fuzzy Labels for Vague Concepts.- Integrated Uncertainty Modelling in Applications.- Possibilistic Channels for DNA Word Design.- Transformation of Possibility Functions in a Climate Model of Intermediate Complexity.- Fuzzy Logic for Stochastic Modeling.- A CUSUM Control Chart for Fuzzy Quality Data.- A Fuzzy Synset-Based Hidden Markov Model for Automatic Text Segmentation.- Applying Fuzzy Measures for Considering Interaction Effects in Fine Root Dispersal Models.- Scoring Feature Subsets for Separation Power in Supervised Bayes Classification.- Interval Random Variables and Their Application in Queueing Systems with LongTailed Service Times.- Online Learning for Fuzzy Bayesian Prediction.

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.