0

Chemical Thermodynamics for Process Simulation

eBook

Gmehling, Jürgen/Kolbe, Bärbel/Kleiber, Michael et al
Erschienen am 15.03.2019, 2. Auflage 2019
102,99 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9783527809455
Sprache: Englisch
Umfang: 808 S., 17.04 MB
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

The only textbook that applies thermodynamics to real-world process engineering problems

This must-read for advanced students and professionals alike is the first book to demonstrate how chemical thermodynamics work in the real world by applying them to actual engineering examples. It also discusses the advantages and disadvantages of the particular models and procedures, and explains the most important models that are applied in process industry. All the topics are illustrated with examples that are closely related to practical process simulation problems. At the end of each chapter, additional calculation examples are given to enable readers to extend their comprehension.

Chemical Thermodynamics for Process Simulation instructs on the behavior of fluids for pure fluids, describing the main types of equations of state and their abilities. It discusses the various quantities of interest in process simulation, their correlation, and prediction in detail. Chapters look at the important terms for the description of the thermodynamics of mixtures; the most important models and routes for phase equilibrium calculation; models which are applicable to a wide variety of non-electrolyte systems; membrane processes; polymer thermodynamics; enthalpy of reaction; chemical equilibria, and more.

-Explains thermodynamic fundamentals used in process simulation with solved examples
-Includes new chapters about modern measurement techniques, retrograde condensation, and simultaneous description of chemical equilibrium
-Comprises numerous solved examples, which simplify the understanding of the often complex calculation procedures, and discusses advantages and disadvantages of models and procedures
-Includes estimation methods for thermophysical properties and phase equilibria thermodynamics of alternative separation processes
-Supplemented with MathCAD-sheets and DDBST programs for readers to reproduce the examples

Chemical Thermodynamics for Process Simulation is an ideal resource for those working in the fields of process development, process synthesis, or process optimization, and an excellent book for students in the engineering sciences.

Autorenportrait

Jurgen Gmehling, PhD, is Professor of Chemical Engineering at the University of Oldenburg, Germany. He is also president and CEO of DDBST GmbH, Oldenburg, as well as cofounder of LTP GmbH, part of the Carl von Ossietzky University of Oldenburg.

Michael Kleiber, PhD, works as a Chief Development Engineer for ThyssenKrupp Uhde, Germany.

Barbel Kolbe, PhD, is a senior process engineer for ThyssenKrupp Uhde, Germany.


Jurgen Rarey, PhD, is a professor at the University of Oldenburg, Germany, and cofounded DDBST GmbH, Oldenburg. He is also an honorary professor in Durban, South Africa.

Inhalt

Preface xiii

Preface to the Second Edition xvii

List of Symbols xix

About the Authors xxix

1 Introduction1

2PvT Behavior of Pure Components5

2.1 General Description 5

2.2 Caloric Properties 10

2.3 Ideal Gases 14

2.4 Real Fluids 16

2.4.1 Auxiliary Functions 16

2.4.2 Residual Functions 17

2.4.3 Fugacity and Fugacity Coefficient 19

2.4.4 Phase Equilibria 22

2.5 Equations of State 25

2.5.1 Virial Equation 26

2.5.2 High-Precision Equations of State 30

2.5.3 Cubic Equations of State 37

2.5.4 Generalized Equations of State and Corresponding-States Principle 42

2.5.5 Advanced Cubic Equations of State 49

Problems 57

References 60

3 Correlation and Estimation of Pure Component Properties63

3.1 Introduction 63

3.2 Characteristic Physical Property Constants 63

3.2.1 Critical Data 64

3.2.2 Acentric Factor 69

3.2.3 Normal Boiling Point 69

3.2.4 Melting Point and Enthalpy of Fusion 72

3.2.5 Standard Enthalpy and Standard Gibbs Energy of Formation 74

3.3 Temperature-Dependent Properties 77

3.3.1 Vapor Pressure 78

3.3.2 Liquid Density 90

3.3.3 Enthalpy of Vaporization 94

3.3.4 Ideal Gas Heat Capacity 98

3.3.5 Liquid Heat Capacity 105

3.3.6 Speed of Sound 109

3.4 Correlation and Estimation of Transport Properties 110

3.4.1 Liquid Viscosity 110

3.4.2 Vapor Viscosity 115

3.4.3 Liquid Thermal Conductivity 120

3.4.4 Vapor Thermal Conductivity 125

3.4.5 Surface Tension 128

3.4.6 Diffusion Coefficients 131

Problems 135

References 138

4 Properties of Mixtures143

4.1 Introduction 143

4.2 Property Changes of Mixing 144

4.3 Partial Molar Properties 145

4.4 GibbsDuhem Equation 148

4.5 Ideal Mixture of Ideal Gases 150

4.6 Ideal Mixture of Real Fluids 152

4.7 Excess Properties 153

4.8 Fugacity in Mixtures 154

4.8.1 Fugacity of an Ideal Mixture 155

4.8.2 Phase Equilibrium 155

4.9 Activity and Activity Coefficient 156

4.10 Application of Equations of State to Mixtures 157

4.10.1 Virial Equation 158

4.10.2 Cubic Equations of State 159

Problems 169

References 170

5 Phase Equilibria in Fluid Systems173

5.1 Introduction 173

5.2 Thermodynamic Fundamentals 185

5.3 Application of Activity Coefficients 192

5.4 Calculation of VaporLiquid Equilibria UsinggEModels 195

5.5 Fitting ofgE Model Parameters 212

5.5.1 Check of VLE Data for Thermodynamic Consistency 218

5.5.2 RecommendedgEModel Parameters 227

5.6 Calculation of VaporLiquid Equilibria Using Equations of State 229

5.6.1 Fitting of Binary Parameters of Cubic Equations of State 235

5.7 Conditions for the Occurrence of Azeotropic Behavior 243

5.8 Solubility of Gases in Liquids 252

5.8.1 Calculation of Gas Solubilities Using Henry Constants 254

5.8.2 Calculation of Gas Solubilities Using Equations of State 262

5.8.3 Prediction of Gas Solubilities 263

5.9 LiquidLiquid Equilibria 266

5.9.1 Temperature Dependence of Ternary LLE 277

5.9.2 Pressure Dependence of LLE 279

5.10 Predictive Models 280

5.10.1 Regular Solution Theory 281

5.10.2 Group Contribution Methods 282

5.10.3 UNIFAC Method 284

5.10.3.1 Modified UNIFAC (Dortmund) 291

5.10.3.2 Weaknesses of the Group Contribution Methods UNIFAC and Modified UNIFAC 295

5.10.4 Predictive SoaveRedlichKwong (PSRK) Equation of State 302

5.10.5 VTPR Group Contribution Equation of State 306

Problems 315

References 319

6 Caloric Properties323

6.1 Caloric Equations of State 323

6.1.1 Internal Energy and Enthalpy 323

6.1.2 Entropy 326

6.1.3 Helmholtz Energy and Gibbs Energy 327

6.2 Enthalpy Description in Process Simulation Programs 329

6.2.1 Route A: Vapor as Starting Phase 330

6.2.2 Route B: Liquid as Starting Phase 334

6.2.3 Route C: Equation of State 335

6.3 Caloric Properties in Chemical Reactions 343

Problems 349

References 350

7 Electrolyte Solutions351

7.1 Introduction 351

7.2 Thermodynamics of Electrolyte Solutions 355

7.3 Activity Coefficient Models for Electrolyte Solutions 360

7.3.1 DebyeHückel Limiting Law 360

7.3.2 Bromley Extension 361

7.3.3 Pitzer Model 361

7.3.4 NRTL Electrolyte Model by Chen 364

7.3.5 LIQUAC Model 372

7.3.6 MSA Model 380

7.4 Dissociation Equilibria 381

7.5 Influence of Salts on the VaporLiquid Equilibrium Behavior 383

7.6 Complex Electrolyte Systems 385

Problems 386

References 386

8 SolidLiquid Equilibria389

8.1 Introduction 389

8.2 Thermodynamic Relations for the Calculation of SolidLiquid Equilibria 392

8.2.1 SolidLiquid Equilibria of Simple Eutectic Systems 394

8.2.1.1 Freezing Point Depression 401

8.2.2 SolidLiquid Equilibria of Systems with Solid Solutions 402

8.2.2.1 Ideal Systems 402

8.2.2.2 SolidLiquid Equilibria for Nonideal Systems 403

8.2.3 SolidLiquid Equilibria with Intermolecular Compound Formation in the Solid State 406

8.2.4 Pressure Dependence of SolidLiquid Equilibria 409

8.3 Salt Solubility 409

8.4 Solubility of Solids in Supercritical Fluids 414

Problems 416

References 419

9 Membrane Processes421

9.1 Osmosis 421

9.2 Pervaporation 424

Problems 425

References 426

10 Polymer Thermodynamics427

10.1 Introduction 427

10.2gE Models 433

10.3 Equations of State 444

10.4 Influence of Polydispersity 460

10.5 Influence of Polymer Structure 464

Problems 465

References 467

11 Applications of Thermodynamics in Separation Technology469

11.1 Introduction 469

11.2 Verification of Model Parameters Prior to Process Simulation 474

11.2.1 Verification of Pure Component Parameters 474

11.2.2 Verification ofgEModel Parameters 475

11.3 Investigation of Azeotropic Points in Multicomponent Systems 483

11.4 Residue Curves, Distillation Boundaries, and Distillation Regions 484

11.5 Selection of Entrainers for Azeotropic and Extractive Distillation 491

11.6 Selection of Solvents for Other Separation Processes 499

11.7 Selection of Solvent-Based Separation Processes 499

Problems 503

References 504

12 Enthalpy of Reaction and Chemical Equilibria505

12.1 Introduction 505

12.2 Enthalpy of Reaction 506

12.2.1 Temperature Dependence 507

12.2.2 Consideration of the Real Gas Behavior on the Enthalpy of Reaction 509

12.3 Chemical Equilibrium 511

12.4 Multiple Chemical Reaction Equilibria 530

12.4.1 Relaxation Method 531

12.4.2 Gibbs Energy Minimization 535

Problems 544

References 547

13 Examples for Complex Systems549

13.1 Introduction 549

13.2 Formaldehyde Solutions 549

13.3 Vapor Phase Association 555

Problems 568

References 570

14 Practical Applications573

14.1 Introduction 573

14.2 Flash 573

14.3 JouleThomson Effect 575

14.4 Adiabatic Compression and Expansion 577

14.5 Pressure Relief 581

14.6 Limitations of Equilibrium Thermodynamics 586

Problems 589

References 591

15 Experimental Determination of Pure Component and Mixture Properties593

15.1 Introduction 593

15.2 Pure Component Vapor Pressure and Boiling Temperature 594

15.3 Enthalpy of Vaporization 598

15.4 Critical Data 599

15.5 VaporLiquid Equilibria 599

15.5.1 Dynamic VLE Stills 601

15.5.2 Static Techniques 604

15.5.3 Degassing 611

15.5.4 Headspace Gas Chromatography (HSGC) 613

15.5.5 High-Pressure VLE 614

15.5.6 Inline True Component Analysis in Reactive Mixtures 616

15.6 Activity Coefficients at Infinite Dilution 617

15.6.1 Gas Chromatographic Retention Time Measurement 618

15.6.2 Inert Gas Stripping (Dilutor) 620

15.6.3 Limiting Activity Coefficients of High Boilers in Low Boilers 622

15.7 LiquidLiquid Equilibria (LLE) 622

15.8 Gas Solubility 623

15.9 Excess Enthalpy 624

Problems 626

References 626

16 Introduction to the Collection of Example Problems631

16.1 Introduction 631

16.2 Mathcad Examples 631

16.3 Examples Using the Dortmund Data Bank (DDB) and the Integrated Software Package DDBSP 633

16.4 Examples Using Microsoft Excel and Microsoft Office VBA 634

Appendix A Pure Component Parameters635

Appendix B Coefficients for High-Precision Equations of State663

References 668

Appendix C Useful Derivations669

A1 Relationship Between (𝜕s/𝜕T)Pand (𝜕s/𝜕T)v 670

A2 Expressions for (𝜕u/𝜕v)T and (𝜕s/𝜕v)T 670

A3 cP and cv as Derivatives of the Specific Entropy 671

A4 Relationship Between cP and cv 672

A5 Expression for (𝜕h/𝜕P)T 673

A6 Expression for (𝜕s/𝜕P)T 674

A7 Expression for [𝜕(g/RT)/𝜕T]Pand vant Hoff Equation 674

A8 General Expression for cv 675

A9 Expression for (𝜕P/𝜕v)T 676

A10 Cardanos Formula 676

B1 Derivation of the Kelvin Equation 677

B2 Equivalence of Chemical Potential and Gibbs Energy g for a Pure Substance 678

B3 Phase Equilibrium Condition for a Pure Substance 679

B4 Relationship Between Partial Molar Property and State Variable (Euler Theorem) 681

B5 Chemical Potential in Mixtures 681

B6 Relationship Between Second Virial Coefficients of Leiden and Berlin Form 682

B7 Derivation of Expressions for the Speed of Sound for Ideal and Real Gases 683

B8 Activity of the Solvent in an Electrolyte Solution 685

B9 Temperature Dependence of the Azeotropic Composition 686

B10 Konovalov Equations 688

C1 (ssid)T,P 691

C2 (hhid)T,P 692

C3 (ggid)T,P 692

C4 Relationship Between Excess Enthalpy and Activity Coefficient 692

D1 Fugacity Coefficient for a Pressure-Explicit Equation of State 692

D2 Fugacity Coefficient of the Virial Equation (Leiden Form) 694

D3 Fugacity Coefficient of the Virial Equation (Berlin Form) 695

D4 Fugacity Coefficient of the SoaveRedlichKwong Equation of State 696

D5 Fugacity Coefficient of the PSRK Equation of State 698

D6 Fugacity Coefficient of the VTPR Equation of State 702

E1 Derivation of the Wilson Equation 707

E2 Notation of the Wilson, NRTL, and UNIQUAC Equations in Process Simulation Programs 710

E3 Inability of the Wilson Equation to Describe a Miscibility Gap 711

F1 (hhid) for SoaveRedlichKwong Equation of State 713

F2 (ssid) for SoaveRedlichKwong Equation of State 715

F3 (ggid) for SoaveRedlichKwong Equation of State 715

F4 Antiderivatives of cid P Correlations 715

G1 Speed of Sound as Maximum Velocity in an Adiabatic Pipe with Constant Cross-Flow Area 717

G2 Maximum Mass Flux of an Ideal Gas 717

References 719

Appendix D Standard Thermodynamic Properties for Selected Electrolyte Compounds721

Reference 722

Appendix E Regression Technique for Pure Component Data723

Appendix F Regression Techniques for Binary Parameters727

References 741

Appendix G Ideal Gas Heat Capacity Polynomial Coefficients for Selected Compounds743

Reference 744

Appendix H UNIFAC Parameters745

Further Reading 746

Appendix I Modified UNIFAC Parameters747

Further Reading 751

Appendix J PSRK Parameters753

Further Reading 755

Appendix K VTPR Parameters757

References 759

Further Readings 760

Index 761

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.

Weitere Artikel vom Autor "Gmehling, Jürgen/Kolbe, Bärbel/Kleiber, Michael et al"

Alle Artikel anzeigen