This pioneering textbook on the topic provides a clear and well-structured description of the fundamental chemistry involved in these systems, as well as an excellent overview of the real-life practical applications.
Prof. Holze is a well-known researcher and an experienced author who guides the reader with his didactic style, and readers can test their understanding with questions and answers throughout the text.
Written mainly for advanced students in chemistry, physics, materials science, electrical engineering and mechanical engineering, this text is equally a valuable resource for scientists and engineers working in the field, both in academia and industry.
Foreword xi
Preface xiii
1 Processes and Applications of Energy Conversion and Storage 1
2 Electrochemical Processes and Systems 21
2.1 Parasitic Reactions 30
2.2 Self-discharge 30
2.3 Device Deterioration 32
2.3.1 Aging 37
3 Thermodynamics of Electrochemical Systems 39
4 Kinetics of Electrochemical Energy Conversion Processes 55
4.1 Steps of Electrode Reactions and Overpotentials 56
4.2 Transport 56
4.3 Charge Transfer 59
4.4 Overpotentials 59
4.5 Diffusion 62
4.6 Further Overpotentials 63
5 Electrodes and Electrolytes 71
5.1 Recycling 84
6 Experimental Methods 87
6.1 Battery Tester 87
6.2 CurrentPotential Measurements 88
6.3 Charge/Discharge Measurements 92
6.4 Battery Charging 100
6.5 Linear Scan and Cyclic Voltammetry 107
6.6 Impedance Measurements 111
6.7 Galvanostatic Intermittent Titration Technique (GITT) 117
6.8 Potentiostatic Intermittent Titration Technique (PITT) 119
6.9 Step Potential Electrochemical Spectroscopy (SPECS) 120
6.10 Electrochemical Quartz Crystal Microbalance (EQCM) 121
6.11 Non-electrochemical Methods 121
6.11.1 Solid-state Nuclear Magnetic Resonance 121
6.11.2 Gas Adsorption Measurements 121
6.11.3 Microscopies 122
6.11.4 Thermal Measurements 122
6.11.5 Modeling 123
7 Primary Systems 127
7.1 Aqueous Systems 129
7.1.1 ZincCarbon Battery 129
7.1.2 Alkaline Zn//MnO2 Battery 131
7.1.3 Zn//HgO Battery 134
7.1.4 Zn//AgO Battery 136
7.1.5 Cd//AgO Batteries 138
7.1.6 Mg//MnO2 Batteries 140
7.2 Nonaqueous Systems 141
7.2.1 Primary Lithium Batteries 141
7.2.2 Li//MnO2 144
7.2.3 Li//Bi2O3 145
7.2.4 Li//CuO 146
7.2.5 Li//V2O5, Li//Ag2V4O11, and Li//CSVO 147
7.2.6 Li//CuS 148
7.2.7 Li//FeS2 149
7.2.8 Li//CFx Primary Battery 150
7.2.9 Li//I2 151
7.2.10 Li//SO2 151
7.2.11 Li//SOCl2 153
7.2.12 Li//SO2Cl2 156
7.2.13 Li//Oxyhalide Primary Battery 156
7.3 MetalAir Systems 157
7.3.1 Aqueous MetalAir Primary Batteries 157
7.3.2 Nonaqueous MetalAir Batteries 168
7.4 Reserve Batteries 170
7.4.1 Seawater-activated Batteries 171
7.4.2 High Power Activated Batteries 173
8 Secondary Systems 175
8.1 Aqueous Systems 176
8.1.1 LeadAcid 176
8.1.2 Lead Grid 181
8.1.3 Ni-based Secondary Batteries 189
8.1.4 Aqueous Rechargeable Lithium Batteries 202
8.1.5 Aqueous Rechargeable Sodium Batteries 206
8.2 Nonaqueous Systems 208
8.2.1 Lithium-Ion Batteries 208
8.2.2 Rechargeable Li//S Batteries 230
8.2.3 Rechargeable Na//S Batteries 233
8.2.4 Rechargeable Li//Se Batteries 234
8.2.5 Rechargeable Mg Batteries 235
8.3 Gel Polymer Electrolyte-based Secondary Batteries 235
8.3.1 Gel Lithium-Ion Batteries 236
8.3.2 Gel-Type Electrolytes for Sodium Batteries 238
8.4 Solid Electrolyte-based Secondary Batteries 238
8.4.1 Solid Lithium-Ion Batteries 239
8.4.2 Rechargeable Solid Lithium Batteries 240
8.5 Rechargeable MetalAir Batteries 240
8.5.1 Rechargeable Li//Air Batteries 242
8.5.2 Rechargeable Na//Air Batteries 243
8.5.3 Rechargeable Zn//Air Batteries 245
8.6 High-Temperature Systems 246
8.6.1 SodiumSulfur Battery 247
8.6.2 SodiumNickel Chloride Battery 250
8.6.3 All Liquid Metal Accumalator 254
9 Fuel Cells 257
9.1 The Oxygen Electrode 261
9.2 The Hydrogen Electrode 267
9.3 Common Features of Fuel Cells 268
9.4 Classification of Fuel Cells 272
9.4.1 Ambient Temperature Fuel Cells 272
9.4.2 Alkaline Fuel Cells 273
9.4.3 Polymer Electrolyte Membrane Fuel Cells (PEMFCs) 274
9.4.4 Direct Alcohol Fuel Cells 281
9.4.5 Bioelectrochemical Fuel Cells 283
9.4.6 Intermediate Temperature Fuel Cells 284
9.4.7 Phosphoric Acid Fuel Cell (PAFC) 284
9.4.8 Molten Carbonate Fuel Cells (MCFC) 285
9.4.9 High Temperature Solid Oxide Fuel Cells (SOFC) 286
9.5 Applications of Fuel Cells 288
9.6 Fuel Cells in Energy Storage Systems 289
10 Flow Batteries 293
10.1 The Iron/Chromium System 298
10.2 The Iron/Vanadium System 299
10.3 The Iron/Cadmium System 299
10.4 The Bromine/Polysulfide System 300
10.5 The All-Vanadium System 300
10.6 The Vanadium/Bromine System 302
10.7 Actinide RFBs 302
10.8 All-Organic RFBs 303
10.9 Nonaqueous RFBs 303
10.10 Hybrid Systems 303
10.11 The Zinc/Cerium System 304
10.12 The Zinc/Bromine System 304
10.13 The Zinc/Organic System 305
10.14 The Cadmium/Organic System 305
10.15 The Lead/Lead Dioxide System 306
10.16 The Cadmium/Lead Dioxide System 307
10.17 The All-Copper System 307
10.18 The Zinc/Nickel System 307
10.19 The Lithium/LiFePO4 System 308
10.20 Vanadium Solid-Salt Battery 308
10.21 Vanadium-Dioxygen System 308
10.22 Electrochemical Flow Capacitor 310
10.23 Current State and Perspectives 310
11 Supercapacitors 313
11.1 Classification of Supercapacitors 314
11.2 Electrical Double-Layer Capacitors 316
11.2.1 Electrolytes for EDLCs 317
11.2.2 Electrode Materials for EDLCs 318
11.2.3 Electrochemical Performance of EDLCs 325
11.3 Pseudocapacitors 326
11.3.1 RuO2 327
11.3.2 MnO2 330
11.3.3 Intrinsically Conducting Polymers 335
11.3.4 Redox Couples 343
11.3.5 Electrochemical Performance of Pseudocapacitors 346
11.4 Hybrid Capacitors 351
11.4.1 Negative Electrode Materials 351
11.4.2 Positive Electrode Materials 359
11.4.3 Electrochemical Performance of Hybrid Capacitors 370
11.5 Testing of Supercapacitors 376
11.6 Commercially Available Supercapacitors 377
11.7 Application of Supercapacitors 378
11.7.1 Uninterruptible Power Sources 379
11.7.2 Transportation 379
11.7.3 Smart Grids 380
11.7.4 Military Equipment 380
11.7.5 Other Civilian Applications 381
Appendix 383
Acronyms, Terms, and Definitions 387
Further Reading 401
Index 407