0

Lattice Theory: Special Topics and Applications

eBook - Volume 1

Erschienen am 27.08.2014, 1. Auflage 2014
111,95 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9783319064130
Sprache: Englisch
Umfang: 0 S., 3.85 MB
E-Book
Format: PDF
DRM: Digitales Wasserzeichen

Beschreibung

George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. SoLattice Theory: Foundation provided the foundation. Now we complete this project withLattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Grätzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich Wehrung and George Grätzer.

Autorenportrait

George Grätzer, Member of the Canadian Academy of Sciences and Foreign Member of the Hungarian Academy of Sciences, is the author of 26 books in five languages and about 260 articles, most of them on his research in lattice theory.

Friedrich Wehrung is professor at the University of Caen and an associate editor forAlgebra Universalis, a mathematical journal devoted to universal algebra and lattice theory. He is the author of numerous publications in the field and wrote an appendix to the second edition of Grätzer'sGeneral Lattice Theory.

Inhalt

Introduction. Part I Topology and Lattices.- Chapter 1. Continuous and Completely Distributive Lattices.- Chapter 2. Frames: Topology Without Points.- Part II. Special Classes of Finite Lattices.- Chapter 3. Planar Semi modular Lattices: Structure and Diagram.- Chapter 4. Planar Semi modular Lattices: Congruences.- Chapter 5. Sectionally Complemented Lattices.- Chapter 6. Combinatorics in finite lattices.- Part III. Congruence Lattices of Infinite Lattices and Beyond.- Chapter 7. Schmidt and Pudlák's Approaches to CLP.- Chapter 8. Congruences of lattices and ideals of rings.- Chapter 9. Liftable and Unliftable Diagrams.- Chapter 10. Two topics related to congruence lattices of lattices.

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.