0

Materials and Processes for CO2 Capture, Conversion, and Sequestration

eBook

Erschienen am 29.06.2018, 1. Auflage 2018
126,99 €
(inkl. MwSt.)

Download

E-Book Download
Bibliografische Daten
ISBN/EAN: 9781119231066
Sprache: Englisch
Umfang: 384 S., 30.17 MB
E-Book
Format: PDF
DRM: Adobe DRM

Beschreibung

Addresses materials, technology, and products that could help solve the global environmental crisis once commercialized

This multidisciplinary book encompasses state-of-the-art research on the topics of Carbon Capture and Storage (CCS), and complements existing CCS technique publications with the newest research and reviews. It discusses key challenges involved in the CCS materials design, processing, and modeling and provides in-depth coverage of solvent-based carbon capture, sorbent-based carbon capture, membrane-based carbon capture, novel carbon capture methods, computational modeling, carbon capture materials including metal organic frameworks (MOF), electrochemical capture and conversion, membranes and solvents, and geological sequestration.

Materials and Processes for CO2 Capture, Conversion and Sequestration offers chapters on: Carbon Capture in Metal-Organic Frameworks; Metal Organic Frameworks Materials for Post-Combustion CO2 Capture; New Progress of Microporous Metal-Organic Frameworks in CO2 Capture and Separation; In Situ Diffraction Studies of Selected Metal-Organic Framework (MOF) Materials for Guest Capture Applications; Electrochemical CO2 Capture and Conversion; Electrochemical Valorization of Carbon Dioxide in Molten Salts; Microstructural and Structural Characterization of Materials for CO2 Storage using Multi-Scale X-Ray Scattering Methods; Contribution of Density Functional Theory to Microporous Materials for Carbon Capture; and Computational Modeling Study of MnO2 Octahedral Molecular Sieves for Carbon Dioxide Capture Applications.

Addresses one of the most pressing concerns of societythat of environmental damage caused by the greenhouse gases emitted as we use fossil fuelsCovers cutting-edge capture technology with a focus on materials and technology rather than regulation and costHighlights the common and novel CCS materials that are of greatest interest to industrial researchersProvides insight into CCS materials design, processing characterization, and computer modeling

Materials and Processes for CO2 Capture, Conversion and Sequestration is ideal for materials scientists and engineers, energy scientists and engineers, inorganic chemists, environmental scientists, pollution control scientists, and carbon chemists.

Autorenportrait

LAN (SAMANTHA) LI, PHD, is an assistant professor at the Micron School of Materials Science and Engineering at Boise State University, and an affiliate researcher at the Center for Advanced Energy Studies in Idaho.

WINNIE WONG-NG, PHD, FAAAS, FACA, FACERS, and DFICDD, is a research chemist in the Materials Measurement Science Division of the National Institute of Standards and Technology.

KEVIN HUANG, PHD, is a SmartState Chair professor in the Mechanical Engineering Department and director at the SmartState Center for Solid Oxide Fuel Cells at the University of South Carolina.

LAWRENCE P. COOK, PHD, is a research ordinary professor of chemistry and a lecturer in the Materials Science and Engineering Department at The Catholic University of America in Washington, DC.

Inhalt

Preface xi

List of Contributors xiii

1 CARBON CAPTURE IN METALORGANIC FRAMEWORKS 1
Mehrdad Asgari and Wendy L. Queen

1.1 Introduction 1

1.1.1 The Importance of Carbon Dioxide Capture 1

1.1.2 Conventional Industrial Process of Carbon Capture and Limitations: Liquid Amines 3

1.1.3 MetalOrganic Frameworks and Their Synthesis 4

1.1.4 CCS Technologies and MOF Requirements 6

1.1.5 Molecule Specific 10

1.2 Understanding the Adsorption Properties of MOFs 11

1.2.1 Single-Component Isotherms 11

1.2.2 Multicomponent Adsorption 14

1.2.3 Experimental Breakthrough 15

1.2.4In Situ Characterization 16

1.3 MOFs for Post-combustion Capture 30

1.3.1 Necessary Framework Properties for CO2 Capture 30

1.3.2 Assessing MOFs for CO2/N2 Separations 32

1.3.3 MOFs with Open Metal Coordination Sites (OMCs) 34

1.3.4 MOFs Containing Lewis Basic Sites 37

1.3.5 Stability and Competitive Binding in the Presence of H2O 45

1.4 MOFs for Pre-combustion Capture 48

1.4.1 Advantages of Pre-combustion Capture 48

1.4.2 Necessary Framework Properties for CO2 Capture 49

1.4.3 Potential MOF Candidates for CO2/H2 Separations 50

1.5 MOFs for Oxy-Fuel Combustion Capture 54

1.5.1 Necessary Framework Properties for O2/N2 Separations 54

1.5.2 Biological Inspiration for O2/N2 Separations in MOFs 55

1.5.3 Potential MOF Candidates for O2/N2 Separations 56

1.6 Future Perspectives and Outlook 61

Acknowledgments 63

References 63

2 METALORGANIC FRAMEWORKS MATERIALS FOR POST-COMBUSTION CO2 CAPTURE 79
Anne M. Marti

2.1 Introduction: The Importance of Carbon Capture and Storage Technologies 79

2.1.1 Post-combustion CO2 Capture Technologies 80

2.1.2 MetalOrganic Frameworks: Potential for Post-combustion CCS 82

2.2 MetalOrganic Frameworks as Sorbents 84

2.2.1 Criteria for Choosing the Best CO2 Sorbent 84

2.2.2 Discussion of Defined Sorbent Criteria 87

2.3 MetalOrganic Framework Membranes for CCS 99

2.3.1 Membrane Performance Defined 99

2.3.2 MOF Membrane Fabrication 102

2.4 Summary 104

References 104

3 NEW PROGRESS OF MICROPOROUS METALORGANIC FRAMEWORKS IN CO2 CAPTURE AND SEPARATION 112
Zhangjing Zhang, Jin Tao, Shengchang Xiang, Banglin Chen, and Wei Zhou

3.1 Introduction 112

3.2 Survey of Typical MOF Adsorbents 116

3.2.1 CO2 Capture and Separation at Low Pressure 116

3.2.2 CO2 Capture and Separation at High Pressure 139

3.2.3 Capture CO2 Directly from Air 140

3.2.4 CO2/CH4 Separation 145

3.2.5 CO2/C2H2 Separation 148

3.2.6 Photocatalytic and Electrochemical Reduction of CO2 149

3.2.7 Humidity Effect 152

3.3 Zeolite Adsorbents in Comparison with MOFs 158

3.4 MOFs Membrane for CCS 163

3.5 Summary and Outlook 165

Acknowledgments 166

References 167

4IN SITU DIFFRACTION STUDIES OF SELECTED METALORGANIC FRAMEWORK MATERIALS FOR GUEST CAPTURE/EXCHANGE APPLICATIONS 180
Winnie Wong-Ng

4.1 Introduction 180

4.1.1 Background 180

4.1.2In Situ Diffraction Characterization 181

4.2 Apparatus forIn Situ Diffraction Studies 182

4.2.1 Single-Crystal Diffraction Applications 182

4.2.2 Powder Diffraction Applications 185

4.3In Situ Single-Crystal Diffraction Studies of MOFs 186

4.3.1 Thermally Induced Reversible Single Crystal-to-Single Crystal Transformation 187

4.3.2 Structure Transformation Induced by Presence of Guests 188

4.3.3 Dynamic CO2 Adsorption Behavior 190

4.3.4 Unstable Intermediate Stage During Guest Exchange 190

4.3.5 Mechanism of CO2 Adsorption 192

4.4 Powder Diffraction Studies of MOFs 193

4.4.1 Synchrotron/Neutron Diffraction Studies 193

4.4.2 Laboratory X-ray Diffraction Studies 204

4.5 Conclusion 207

References 207

5 ELECTROCHEMICAL CO2 CAPTURE AND CONVERSION 213
Peng Zhang, Jingjing Tong, and Kevin Huang

5.1 Introduction 213

5.2 Current Electrochemical Methods for Carbon Capture and Conversion 214

5.2.1 Ambient-Temperature Approach 215

5.2.2 High-Temperature Approach 218

5.3 Development of High-Temperature Permeation Membranes for Electrochemical CO2 Capture and Conversion 224

5.3.1 Development of MECC Membranes 224

5.3.2 Development of MOCC Membranes 235

5.4 Summary and Outlook 255

Acknowledgments 258

References 258

6 ELECTROCHEMICAL VALORIZATION OF CARBON DIOXIDE IN MOLTEN SALTS 267
Huayi Yin and Dihua Wang

6.1 Introduction 267

6.2 Thermodynamic Analysis of Molten Salt Electrolytes 269

6.2.1 Thermodynamic Analysis of Alkali Metal Carbonates 269

6.2.2 Thermodynamic Analysis of Alkaline-Earth Metal Carbonates 275

6.2.3 Thermodynamic Viewpoint of Variables Affecting Electrolytic Products 277

6.2.4 Thermodynamic Analysis of Mixed Melts 278

6.3 Electrochemistry of Cathode and Anode 282

6.3.1 Electrochemical Reactions at the Cathode 282

6.3.2 Electrochemical Reaction Pathway of CO2 and CO3 (C or CO?) 285

6.3.3 Electrochemical Reaction at the Anode 287

6.4 Applications of Electrolytic Products 289

6.5 Conclusion and Prospects 289

Acknowledgments 292

References 292

7 MICROSTRUCTURAL AND STRUCTURAL CHARACTERIZATION OF MATERIALS FOR CO2 STORAGE USING MULTI-SCALE X-RAY SCATTERING METHODS 296
Greeshma Gadikota and Andrew Allen

7.1 Introduction 296

7.2 Experimental Investigations of Subsurface CO2 Trapping Mechanisms 298

7.3 Comparison of Material Measurements Techniques for Microstructure Characterization 300

7.4 Usaxs/Saxs Instrumentation 302

7.5 Analyses of Ultrasmall- and Small-Angle Scattering Data 304

7.5.1 Determination of the Volume Fractions, Mean Volumes, and Radius of Gyration Using Guinier Approximation and Scattering Invariant 304

7.5.2 Determination of the Surface Area from the Porod Scattering Regime 305

7.5.3 Shapes and Size Distributions 305

7.5.4 Fractal Morphologies 306

7.6 USAXS/SAXS/WAXS Characterization of CO2 Interactions with Na-Montmorillonite 307

7.6.1 Experimental Methods 307

7.6.2 Results and Discussion 310

7.7 Summary 312

Acknowledgments 313

References 313

8 CONTRIBUTION OF DENSITY FUNCTIONAL THEORY TO MICROPOROUS MATERIALS FOR CARBON CAPTURE 319
Eric Cockayne

8.1 Microporous Solids 320

8.2 Overview of DFT 323

8.2.1 Local Density Approximation 324

8.2.2 General Gradient Approximation 325

8.2.3 Meta-GGAs 325

8.2.4 Hybrid Methods 325

8.2.5 DFT+U 326

8.2.6 Van der Waals (Dispersion) Forces 327

8.2.7 Accuracy of DFT 327

8.3 DFT: Applications 328

8.3.1 CO2 Location and Binding Energetics 329

8.3.2 Bandgap 332

8.3.3 Elastic Properties 332

8.3.4 Phonons 333

8.3.5 Thermodynamics 335

8.3.6 NMR 336

8.3.7 Ab Initio Molecular Dynamics 336

8.3.8 CO2 Diffusion 337

8.4 Conclusions and Recommendations 337

References 338

9 COMPUTATIONAL MODELING STUDY OF MNO2 OCTAHEDRAL MOLECULAR SIEVES FOR CARBON DIOXIDECAPTURE APPLICATIONS 344
I. Williamson, M. Lawson, E. B. Nelson, and L. Li

9.1 Introduction 344

9.2 Atomic Structure Versus Magnetic Ordering 345

9.3 Pore Size and Dimensionality 346

9.4 CO2 Sorption Behavior 347

9.4.1 Experimental Observations 347

9.4.2 DFT Studies 348

9.5 Comparison of Cation Dopant Types 348

9.5.1 Cation Effects on CO2 Sorption in OMS-2 349

9.6 OMS-5 351

9.7 Summary 353

References 354

Index 357

Informationen zu E-Books

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.
Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.
Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.