0

Vibro-impact Dynamics

Erschienen am 18.01.2013, 1. Auflage 2013
139,00 €
(inkl. MwSt.)

Nachfragen

In den Warenkorb
Bibliografische Daten
ISBN/EAN: 9781118359457
Sprache: Englisch
Umfang: 270 S.
Einband: gebundenes Buch

Beschreibung

InhaltsangabePreface Chapter 1 Introduction 1 1.1. Discrete and discontinuous systems 1 1.1.1 Discrete dynamical systems 2 1.1.2 Discontinuous dynamical systems 4 1.2 Fermi oscillator and impact problems 8 1.3 book layout 10 References 12 Chapter 2 Nonlinear Discrete Systems 19 2.1 Defintions 19 2.2 Fixed points and stability 21 2.3 Stability switching theory 34 2.4. Bifurcation theory 50 References 59 Chapter 3 Complete Dynamics and Fractality 61 3.1 Complete dynamics of discrete systems 61 3.2 Routes to chaos 69 3.2.1 Onedimensional maps 69 3.2.2 Twodimensional maps 73 3.3 Complete Dynamics of Henon map 75 3.4 Simliarity and Multifractals 81 3.4.1 Similar Structures in period doubling 81 3.4.2 Fractality of chaos via PD bifurcation 86 3.4.3 An example 86 3.5 Complete dynamics of Logistic map 93 References 107 Chapter 4 Discontinuous Dynamical Systems 109 4.1 Basic concepts 109 4.2 Gfunctions 112 4.3 Passable flows 116 4.4 Nonpassable flows 121 4.5 Grazing flows 135 4.6 Flow switching bifucations 149 References 162 Chapter 5 Nonlinear Dynamics of Bouncing Balls 163 5.1 Analytical dynamics of bouncing balls 163 5.1.1 Periodic motions 165 5.1.1 Stability and bifurcations 168 5.1.3 Numerical illustrations 175 5.2 Periodm motions 180 5.3 Complex dynamics 187 5.4 Complex periodic motions 192 References 200 Chapter 6 Complex Dynamics of Impact Pairs 201 6.1 Impact pairs 201 6.2 Analytical, simplest periodic motions 205 6.3 Possible impact notion sequences 216 6.4 Grazing dynamics and stick motions 220 6.5 Mapping structures and periodic motions 228 6.6 Stabilityand bifurcation 232 References 242 Chapter 7 Nonlinear Dynamics of Fermi Oscillators 243 7.1 Mapping dynamics 243 7.2 A Fermi oscillator 249 7.2.1 Absolute description 251 7.2.2 Relative description 257 7.3 Analytical conditions 258 7.4 Mapping structures and motions 260 7.4.1 Switching sets and generic mappings 260 7.4.2 Motions with mapping structures 263 7.4.3 Periodic motion and local stability 265 7.5 Predictions and similations 268 7.5.1 Bifurcation scenarios 268 7.5.2 Analytical predictions 271 7.5.3 Numberical illustractions 278 7.6 Appendix 291 References 295 Subject index 297

Produktsicherheitsverordnung

Hersteller:
Wiley-VCH GmbH
product_safety@wiley.com
Boschstr. 12
DE 69469 Weinheim

Autorenportrait

InhaltsangabePreface Chapter 1 Introduction 1 1.1. Discrete and discontinuous systems 1 1.1.1 Discrete dynamical systems 2 1.1.2 Discontinuous dynamical systems 4 1.2 Fermi oscillator and impact problems 8 1.3 book layout 10 References 12 Chapter 2 Nonlinear Discrete Systems 19 2.1 Defintions 19 2.2 Fixed points and stability 21 2.3 Stability switching theory 34 2.4. Bifurcation theory 50 References 59 Chapter 3 Complete Dynamics and Fractality 61 3.1 Complete dynamics of discrete systems 61 3.2 Routes to chaos 69 3.2.1 Onedimensional maps 69 3.2.2 Twodimensional maps 73 3.3 Complete Dynamics of Henon map 75 3.4 Simliarity and Multifractals 81 3.4.1 Similar Structures in period doubling 81 3.4.2 Fractality of chaos via PD bifurcation 86 3.4.3 An example 86 3.5 Complete dynamics of Logistic map 93 References 107 Chapter 4 Discontinuous Dynamical Systems 109 4.1 Basic concepts 109 4.2 Gfunctions 112 4.3 Passable flows 116 4.4 Nonpassable flows 121 4.5 Grazing flows 135 4.6 Flow switching bifucations 149 References 162 Chapter 5 Nonlinear Dynamics of Bouncing Balls 163 5.1 Analytical dynamics of bouncing balls 163 5.1.1 Periodic motions 165 5.1.1 Stability and bifurcations 168 5.1.3 Numerical illustrations 175 5.2 Periodm motions 180 5.3 Complex dynamics 187 5.4 Complex periodic motions 192 References 200 Chapter 6 Complex Dynamics of Impact Pairs 201 6.1 Impact pairs 201 6.2 Analytical, simplest periodic motions 205 6.3 Possible impact notion sequences 216 6.4 Grazing dynamics and stick motions 220 6.5 Mapping structures and periodic motions 228 6.6 Stabilityand bifurcation 232 References 242 Chapter 7 Nonlinear Dynamics of Fermi Oscillators 243 7.1 Mapping dynamics 243 7.2 A Fermi oscillator 249 7.2.1 Absolute description 251 7.2.2 Relative description 257 7.3 Analytical conditions 258 7.4 Mapping structures and motions 260 7.4.1 Switching sets and generic mappings 260 7.4.2 Motions with mapping structures 263 7.4.3 Periodic motion and local stability 265 7.5 Predictions and similations 268 7.5.1 Bifurcation scenarios 268 7.5.2 Analytical predictions 271 7.5.3 Numberical illustractions 278 7.6 Appendix 291 References 295 Subject index 297

Leseprobe

Leseprobe