Beschreibung
"An excellent book for those who are interested in learning the current status of research and development. [and] who want to get a comprehensive overview of the current state-of-the-art." EStreams This book provides up-to-date information on research and development in the rapidly growing area of networks based on the multihop ad hoc networking paradigm. It reviews all classes of networks that have successfully adopted this paradigm, pointing out how they penetrated the mass market and sparked breakthrough research. Covering both physical issues and applications, Mobile Ad Hoc Networking: Cutting Edge Directions offers useful tools for professionals and researchers in diverse areas wishing to learn about the latest trends in sensor, actuator, and robot networking, mesh networks, delay tolerant and opportunistic networking, and vehicular networks. Chapter coverage includes: * Multihop ad hoc networking * Enabling technologies and standards for mobile multihop wireless networking * Resource optimization in multiradio multichannel wireless mesh networks * QoS in mesh networks * Routing and data dissemination in opportunistic networks * Task farming in crowd computing * Mobility models, topology, and simulations in VANET * MAC protocols for VANET * Wireless sensor networks with energy harvesting nodes * Robotassisted wireless sensor networks: recent applications and future challenges * Advances in underwater acoustic networking * Security in wireless ad hoc networks Mobile Ad Hoc Networking will appeal to researchers, developers, and students interested in computer science, electrical engineering, and telecommunications.
Produktsicherheitsverordnung
Hersteller:
Wiley-VCH GmbH
product_safety@wiley.com
Boschstr. 12
DE 69469 Weinheim
Autorenportrait
InhaltsangabePREFACE xiii ACKNOWLEDGMENTS xv CONTRIBUTORS xvii PART I GENERAL ISSUES 1 Multihop Ad Hoc Networking: The Evolutionary Path 3 Marco Conti and Silvia Giordano 1.1 Introduction, 3 1.2 MANET Research: Major Achievements and Lessons Learned, 5 1.3 Multihop Ad Hoc Networks: From Theory to Reality, 16 1.4 Summary and Conclusions, 25 2 Enabling Technologies and Standards for Mobile Multihop Wireless Networking 34 Enzo Mingozzi and Claudio Cicconetti 2.1 Introduction, 35 2.2 Broadband Wireless Access Technologies, 37 2.3 Wireless Local Area Networks Technologies, 43 2.4 Personal Area Networks Technologies, 53 2.5 Mobility Support in Heterogeneous Scenarios, 65 2.6 Conclusions, 67 3 Application Scenarios 77 Ilias Leontiadis, Ettore Ferranti, Cecilia Mascolo, Liam McNamara, Bence Pasztor, Niki Trigoni, and Sonia Waharte 3.1 Introduction, 78 3.2 Military Applications, 79 3.3 Network Connectivity, 81 3.4 Wireless Sensor Networks, 84 3.5 Search and Rescue, 89 3.6 Vehicular Networks, 93 3.7 Personal Content Dissemination, 96 3.8 Conclusions, 98 4 Security in Wireless Ad Hoc Networks 106 Roberto Di Pietro and Josep Domingo-Ferrer 4.1 Introduction, 106 4.2 Wireless Sensor Networks, 110 4.3 Unattended WSN, 125 4.4 Wireless Mesh Networks, 130 4.5 DelayTolerant Networks, 134 4.6 Vehicular Ad Hoc Networks (VANETs), 137 4.7 Conclusions and Open Research Issues, 144 5 Architectural Solutions for End-User Mobility 154 Salvatore Vanini and Anna Forster 5.1 Introduction, 154 5.2 Mesh Networks, 155 5.3 Wireless Sensor Networks, 182 5.4 Conclusion, 188 6 ExperimentalWork Versus Simulation in the Study of Mobile Ad Hoc Networks 191 Carlo Vallati, Victor Omwando, and Prasant Mohapatra 6.1 Introduction, 191 6.2 Overview of Mobile Ad Hoc Network Simulation Tools and Experimental Platforms, 192 6.3 Gap Between Simulations and Experiments: Issues and Factors, 199 6.4 Good Simulations: Validation, Verification, and Calibration, 220 6.5 Simulators and Testbeds: Future Prospects, 226 6.6 Conclusion, 228 PART II MESH NETWORKING 7 Resource Optimization in Multiradio Multichannel Wireless Mesh Networks 241 Antonio Capone, Ilario Filippini, Stefano Gualandi, and Di Yuan 7.1 Introduction, 242 7.2 Network and Interference Models, 244 7.3 Maximum Link Activation Under the SINR Model, 245 7.4 Optimal Link Scheduling, 247 7.5 Joint Routing and Scheduling, 254 7.6 Dealing with Channel Assignment and Directional Antennas, 257 7.7 Cooperative Networking, 263 7.8 Concluding Remarks and Future Issues, 269 8 Quality of Service in Mesh Networks 275 Raffaele Bruno 8.1 Introduction, 275 8.2 QoS Definition, 277 8.3 A Taxonomy of Existing QoS Routing Approaches, 278 8.4 Routing Protocols with Optimization-Based Path Selection, 280 8.5 Routing Metrics for Minimum-Weight Path Selection, 291 8.6 FeedbackBased Path Selection, 307 8.7 Conclusions, 308 PART III OPPORTUNISTIC NETWORKING 9 Applications in Delay-Tolerant and Opportunistic Networks 317 Teemu K¨arkk¨ainen, Mikko Pitkanen, and JoergOtt 9.1 Application Scenarios, 318 9.2 Challenges for Applications Over DTN, 322 9.3 Critical Mechanisms for DTN Applications, 328 9.4 DTN Applications (Case Studies), 336 9.5 Conclusion: Rethinking Applications for DTNs, 357 10 Mobility Models in Opportunistic Networks 360 Kyunghan Lee, Pan Hui, and Song Chong 10.1 Introduction, 360 10.2 ContactBased Measurement, Analysis, and Modeling, 361 10.3 Trajectory Models, 376 10.4 Implications for Network Protocol Design, 399 10.5 New Paradigm: Delay-Resource Tradeoffs, 406 11 Opportunistic Routing 419 Thrasyvoulos Spyropoulos and Andreea Picu 11.1 Introduction, 420 11.2 Cornerstones of Opportunistic Networks, 422 11.3 Dealing with Uncertainty: Redundancy-Based Routing, 428 11.4 Capitalizing on Structure: U
Leseprobe
Leseprobe